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Enrichment of data analytics 
by whole-brain computational models

MethodsIntroduction
By means of the whole-brain dynamical models  
we investigated the impact of the neuroimaging 
data processing on the results of model validation 
against empirical data. In this study we considered 
several brain parcellations: 
• The functional Schaefer atlas [1] with 100, 200 

and 400 cortical parcels (S100, S200 and S400) 
and anatomical Harvard-Oxford atlas [2] with 96 
cortical parcels and several thresholds of the 
maximal probability (HO96 0% - HO96 45%) . 

We investigated the impact of the brain atlases 
and a few data variables on the model fitting and 
showed that these conditions may strongly 
influence the modeling results.
Goal: To find an optimal parameter setting for 
data-driven mathematical modeling of the resting-
state brain dynamics and data analytics. 

Results

Conclusions
• A choice of a particular brain parcellation  

can cause a strong impact on the quality of 
the model validation and structure of the 
model parameter space, which may deviate 
for different fitting modalities.
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• The variation of Fit-values across subjects 
and parcellations can be accounted for by 
data variables of different correlative types: 
intra-parcellation variables, inter-
parcellation variables and of both types. 

• The results of MLR modeling showed that up 
to 70% of the variance of modeling results 
(Fit-values) can be explained by the 
properties of empirical data used for model 
derivation and validation. 

Computational model 
Kuramoto model [3] of coupled phase oscillators was 
used to simulate the dynamics of the phases ��(�) of 
network nodes � = 1,⋯,�, which represent the mean 
resting-state dynamics of brain regions [4,5] 
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mean conduction velocity

parameter of global coupling strength parameter of global delay
independent noise 
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Brain parcellation 
(brain atlas)

Whole-brain 
tractography

Whole-brain 
network

Whole-brain 
dynamical 
model [6]

Simulated 
BOLD signals

Simulated functional connectivity (sFC) is compared (by Pearson’s 
correlation) with empirical FC (eFC) and structural connectivity (eSC) for 
the best fitting Fit(sFC, eFC) and Fit(sFC, eSC).

correlation sFC         eFC

Model validation (personalized simulations)

Statistical interdependencies

Model validation (group-level analysis, n=272 HCP)

Multiple linear regression model (MLR)

Poster: 1480

correlation sFC        eSC

simulated FC empirical FC simulated FC empirical SC

Best fit and optimal parameters for Fit(sFC, eFC)

Best fit and optimal parameters for Fit(sFC, eSC)

Cross-correlations of Fit(sFC,eFC)

Cross-correlations of Fit(sFC,eSC)

Correlation of Fit(sFC,eFC) with empirical data

Correlative types 
of data variables: 

intra-parcellation inter-parcellation

inter-parcellationof both types


